
THE LAST 15-YEAR PROSPECTS OF THE CREATION OF BIOSTIMULATORS BASED ON NITROGEN FIXING MICROORGANISMS
Abstract
In order to create ecologically safe food products by improving the bioecological system based on microorganisms, it is important to breed nitrogen-fixing and phosphate-mobilizing bacteria on the basis of biotechnological methods and create biopreparations from strains for use in agriculture. As a result of the influence of various abiotic, biotic and anthropogenic factors of the environment on plants, the cultivation of useful plants in agriculture causes a number of problems every day. As a result of intensive demographic growth, the population's demand for food is increasing. The decrease in productivity due to the low production of plant products may lead to the problem of food shortage in the future. As a result of the use of large amounts of synthetic fertilizers to increase productivity, soil fertility has decreased and salinity has increased. Therefore, many studies are currently focused on improving plant-microorganism-soil system mediation relationships. Representatives of other classes of plants need nitrogen fixers. Treating them with biostimulators prepared on the basis of associative and free-living AFB living in the rhizosphere allows not to use synthetic fertilizers beyond the permissible limit in the future, thus improving soil fertility and growing environmentally friendly products.
Keywords
Nitrogen fixation, phosphate mobilization, bacteria
References
Aamir M, Samal S, Rai A, Kashyap SP, Singh SK, Ahmed M, et al. Chapter 25 - Plant microbiome: diversity, distribution, and functional relevance in crop improvement and sustainable agriculture. In: White J, Kumar A, Droby S, editors., et al., Microbiome Stimulants for Crops. Woodhead Publishing; 2021. p. 417–36.
Orozco-Mosqueda MD, Rocha-Granados MD, Glick BR, Santoyo G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res. 2018;208:25–31. https://doi.org/10.1016/j.micres.2018.01.005.
Lau, SE., Teo, W.F.A., Teoh, E.Y. et al. Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discov Food 2, 9 (2022). https://doi.org/10.1007/s44187-022-00009-5
Baetz U, Martinoia E. Root exudates: The hidden part of plant defense. Trends Plant Sci. 2014;19(2):90–8. https://doi.org/10.1016/j.tplants.2013.11.006.
Fincheira P, Quiroz A, Tortella G, Diez MC, Rubilar O. Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth. Microbiol Res. 2021;247:126726. https://doi.org/10.1016/j.micres.2021.126726.
Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, et al. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA. 2003;100(8):4927–32. https://doi.org/10.1073/pnas.0730845100.
Jiang CH, Xie YS, Zhu K, Wang N, Li ZJ, Yu GJ, et al. Volatile organic compounds emitted by Bacillus sp JC03 promote plant growth through the action of auxin and strigolactone. Plant Growth Regul. 2019;87(2):317–28. https://doi.org/10.1007/s10725-018-00473-z.
Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M, Rocha-Granados MC, Macías-Rodríguez L, Santoyo G. Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol. 2018;13:46–52. https://doi.org/10.1016/j.bcab.2017.11.007.
Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, et al. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. 2013;4:356. https://doi.org/10.3389/fpls.2013.00356.
Quiza L, St-Arnaud M, Yergeau E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci. 2015;6:11. https://doi.org/10.3389/fpls.2015.00507.
Kumar A, Verma JP. Does plant—microbe interaction confer stress tolerance in plants: A review? Microbiol Res. 2018;207:41–52. https://doi.org/10.1016/j.micres.2017.11.004.
Wu L, Xiao W, Chen G, Song D, Khaskheli MA, Li P, et al. Identification of Pseudomonas mosselii BS011 gene clusters required for suppression of rice blast fungus Magnaporthe oryzae. J Biotechnol. 2018;282:1–9. https://doi.org/10.1016/j.jbiotec.2018.04.016.
Turan M, Kıtır N, Alkaya Ü, Günes A, Tüfenkçi Ş, Yıldırım E, et al. Making Soil More Accessible to Plants: The Case of Plant Growth Promoting Rhizobacteria. In: Rigobelo EC, editor., et al., Plant Growth. New York: IntechOpen; 2016. p. 61–9.
Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003;255(2):571–86. https://doi.org/10.1023/A:1026037216893.
Yoolong S, Kruasuwan W, Pham HTT, Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A. Modulation of salt tolerance in Thai jasmine rice (Oryza sativa L cv KDML105) by Streptomyces venezuelae ATCC 10712 expressing ACC deaminase. Sci Rep. 2019;9(1):1275. https://doi.org/10.1038/s41598-018-37987-5.
Gou W, Tian L, Ruan Z, Zheng P, Chen F, Zhang L, et al. Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains. Pak J Bot. 2015;47(2):581–6.
Del Buono D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci Total Environ. 2021;751:141763. https://doi.org/10.1016/j.scitotenv.2020.141763.
Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A. Biostimulants and crop responses: A review. Biol Agric Hortic. 2015;31(1):1–17. https://doi.org/10.1080/01448765.2014.964649
du Jardin P. Plant biostimulants: Definition, concept, main categories and regulation. Sci Hortic. 2015;196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021.
Basak A. Biostimulators–definitions, classification and legislation. In: Gawrońska H, editor. Monographs Series: Biostimulators in Modern Agriculture. General Aspects. Warsaw: Wieś Jutra; 2008. p. 7–17
Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH. Going back to the roots: The microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11(11):789–99. https://doi.org/10.1038/nrmicro3109
Graham P.H., Vance C.P. Legumes: Importance and constraints to greater use. Plant Physiol. 2003;131:872–877. doi: 10.1104/pp.017004. [DOI] [PMC free article] [PubMed] [Google Scholar]
Rosenblueth M., Ormeño-Orrillo E., López-López A., Rogel M.A., Reyes-Hernández B.J., Martínez-Romero J.C., Reddy P.M., Martínez-Romero E. Nitrogen Fixation in Cereals. Front. Microbiol. 2018;9:9. doi: 10.3389/fmicb.2018.01794.
Morris J.J., Schniter E.J. Black Queen markets: Commensalism, dependency, and the evolution of cooperative specialization in human society. J. Bioecon. 2018;20:69–105. doi: 10.1007/s10818-017-9263-x.
S. Ali, J. Duan, T.C. Charles, B.R. Glick A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp J. Theor. Biol., 343 (2014), pp. 193-198
Schultze M., Kondorosi A.J. Regulation of symbiotic root nodule development. Annu. Rev. Genet. 1998;32:33–57. doi: 10.1146/annurev.genet.32.1.33.
Oldroyd G.E., Downie J.A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 2008;59:519–546. doi: 10.1146/annurev.arplant.59.032607.092839.
Desbrosses G.J., Stougaard J. Root nodulation: A paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe. 2011;10:348–358. doi: 10.1016/j.chom.2011.09.005.
Yates M., Jones C. Advances in Microbial Physiology. Volume 11. Elsevier BV; Amsterdam, The Netherlands: 1974. Respiration and Nitrogen Fixation in Azotobacter; pp. 97–135.
Poole R.K., Hill S. Respiratory protection of nitrogenase activity in Azotobacter vinelandii—Roles of the terminal oxidases. Biosci. Rep. 1997;17:303–317.
Biswas B., Gresshoff P.M. The role of symbiotic nitrogen fixation in sustainable production of biofuels. Int. J. Mol. Sci. 2014;15:7380–7397.
Wopereis J., Pajuelo E., Dazzo F.B., Jiang Q., Gresshoff P.M., De Bruijn F.J., Stougaard J., Szczyglowski K. Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J. 2000;23:97–114.
Newcomb W., Sippell D., Peterson R.J. The early morphogenesis of Glycine max and Pisum sativum root nodules. Can. J. Bot. 1979;57:2603–2616.
Rolfe B.G., Gresshoff P.J., Biology P.M. Genetic analysis of legume nodule initiation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1988;39:297–319.
Zapata F., Danso S.K.A., Hardarson G., Fried M. Time Course of Nitrogen Fixation in Field-Grown Soybean Using Nitrogen-15 Methodology1. Agron. J. 1987;79:172–176.
A.O. Adesemoye, J.W. Kloepper Plant-microbes interactions in enhanced fertilizer-use efficiency Appl. Microbiol. Biotechnol., 85 (2009), pp. 1-12
G. Santoyo, G. Moreno-Hagelsieb, Ma del C. Orozco-Mosqueda, B.R. Glick Plant growth-promoting bacterial endophytes Microbiol. Res., 183 (2016), pp. 92-99
S. Ali, T.C. Charles, B.R. Glick Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase J. Appl. Microbiol., 113 (2012), pp. 1139-1144
B.G. Coutinho, D. Licastro, L. Mendonça-Previato, M. Cámara, V. Venturi Plant-influenced gene expression in the rice endophyt: Burkholderia kururiensis M130 Mol. Plant Microbe Interact., 28 (2015), pp. 10-21
J.A. Vorholt Microbial life in the phyllosphere Nat. Rev. Microbiol., 10 (2012), p. 828
Quiza L, St-Arnaud M, Yergeau E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci. 2015;6:11. https://doi.org/10.3389/fpls.2015.00507.
Kumar A, Verma JP. Does plant—microbe interaction confer stress tolerance in plants: A review? Microbiol Res. 2018;207:41–52. https://doi.org/10.1016/j.micres.2017.11.004.
Yang WL, Gong T, Wang JW, Li GJ, Liu YY, Zhen J, et al. Effects of compound microbial fertilizer on soil characteristics and yield of wheat (Triticum aestivum L). Soil Sci Plant Nutr. 2020;20(4):2740–8. https://doi.org/10.1007/s42729-020-00340-9.
Erdemci I. Effects of seed microbial inoculant on growth, yield, and nutrition of durum wheat (Triticum durum L). Commun Soil Sci Plant Anal. 2021;52(7):792–801. https://doi.org/10.1080/00103624.2020.1869764.
Wang ZK, Chen ZY, Kowalchuk GA, Xu ZH, Fu XX, Kuramae EE. Succession of the resident soil microbial community in response to periodic inoculations. Appl Environ Microbiol. 2021;87(9):16. https://doi.org/10.1128/aem.00046-21.
Arif I, Batool M, Schenk PM. Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends Biotechnol. 2020;38(12):1385–96. https://doi.org/10.1016/j.tibtech.2020.04.015.
Rodriguez R, Duran P. Natural holobiome engineering by using native extreme microbiome to counteract the climate change effects. Front Bioeng Biotechnol. 2020;8:14. https://doi.org/10.3389/fbioe.2020.00568.
Gou W, Tian L, Ruan Z, Zheng P, Chen F, Zhang L, et al. Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains. Pak J Bot. 2015;47(2):581–6.
Cordell, D.,White, S. (2014): Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour. 39, 161–188.
ФОСФАТ-СОЛЮБИЛИЗИРУЮЩАЯ АКТИВНОСТЬ РИЗОБАКТЕРИЙ ПШЕНИЦЫ (Triticum aestivum L.) // Universum: химия и биология : электрон. научн. журн. Кадырова Г.Х. [и др.]. 2022. 12(102). URL: https://7universum.com/ru/nature/archive/item/14609
Whipps, J.M., Hand, P., Pink, D. and Bending, G.D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. J. Appl. Microbiol. 105: 1744 –1755.
Dugald E. Reid, Brett J. Ferguson, Satomi Hayashi, Yu-Hsiang Lin, Peter M. Gresshoff., Molecular mechanisms controlling legume autoregulation of nodulation Annals of Botany, Volume 108, Issue 5, October 2011, Pages 789–795, https://doi.org/10.1093/aob/mcr205
Freiberg, E. (1998) Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest. Oecologia 117, 9–18.
Murty, M.G. (1983) Nitrogen fixation (acetylene‐reduction) in the phyllosphere of some economically important plants. Plant Soil 73, 151–153.
Miyamoto, T., Kawahara, M. and Minamisawa, K. (2004) Novel endophytic nitrogen‐fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70, 6580–6586.
Rangel, Lorena & Leveau, Johan. (2024). Applied microbiology of the phyllosphere. Applied Microbiology and Biotechnology. 108. 10.1007/s00253-024-13042-4.
Michael Fürnkranz, Wolfgang Wanek, Andreas Richter, Guy Abell, Frank Rasche & Angela Sessitsch., Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica The ISME Journal volume 2, pages561–570 (2008)
Aasfar A, Bargaz A, Yaakoubi K, Hilali A, Bennis I, Zeroual Y and Meftah Kadmiri I (2021) Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Front. Microbiol. 12:628379. doi: 10.3389/fmicb.2021.628379
Levicán, G., Ugalde, J.A., Ehrenfeld, N. et al. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics 9, 581 (2008). https://doi.org/10.1186/1471-2164-9-581
Article Statistics
Downloads
Copyright License
Copyright (c) 2024 Rakhmatova Madina, Qushiyev Khabibjon, Khusanov Tokhir

This work is licensed under a Creative Commons Attribution 4.0 International License.