Articles | Open Access | https://doi.org/10.37547/ijmsphr/Volume06Issue05-04

Deep Learning Meets Early Diagnosis: A Hybrid CNN-DNN Framework for Lung Cancer Prediction and Clinical Translation

Mazharul Islam Tusher , Department of Computer Science, Monroe College, New Rochelle, New York, USA
Md Refat Hossain , Master of Business Administration, Westcliff University, USA
Arjina Akter , Department of Public Health, Central Michigan University, Mount Pleasant, Michigan, USA
Md Rayhan Hassan Mahin , Department of Computer Science, Monroe University, New Rochelle, USA
Sharmin Sultana Akhi , Department of Computer Science, Monroe University, USA
MD Sajedul Karim Chy , Department of Business Administration, Washington University of Science and Technology, USA
Mahfuz Haider , Clinical Operations Analyst, Department of Clinical Operations, University of Virginia Physicians Group
Sadia Akter , Department of Business Administration, International American University, USA
Md Minzamul Hasan , Doctor of Business Administration (DBA), College of Business, Westcliff University, USA
Mujiba Shaima , Department of Computer Science. Monroe University, NY

Abstract

Early detection of lung cancer significantly improves patient survival yet remains a challenge due to the subtle nature of early-stage radiological features. This study proposes a multimodal deep learning framework that combines convolutional neural networks (CNN) with dense neural networks (DNN) to enhance early-stage lung cancer prediction. A curated dataset comprising 2,000 patient records with CT scans and clinical metadata was preprocessed and used to train multiple models. The hybrid CNN-DNN model achieved the highest performance with an accuracy of 96.4%, precision of 95.8%, recall of 97.1%, F1-score of 96.4%, and AUC of 0.982, outperforming both traditional machine learning models and standalone CNNs. The integration of imaging and clinical features led to robust and accurate predictions, demonstrating strong potential for real-world clinical application. The results support the deployment of such AI-driven tools in diagnostic workflows to facilitate timely and accurate lung cancer detection.

Keywords

Lung cancer detection, deep learning, convolutional neural networks (CNN), dense neural networks (DNN), early diagnosis, medical imaging, clinical integration, artificial intelligence (AI), hybrid model, computer-aided diagnosis

References

Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., ... & Tse, D. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 25(6), 954–961. https://doi.org/10.1038/s41591-019-0447-x

Choi, W., Han, K., Ko, E. S., Bae, J. M., Ko, S. Y., & Song, S. E. (2021). Deep learning with multimodal fusion for breast cancer diagnosis using mammography and clinical data. European Radiology, 31, 8435–8444. https://doi.org/10.1007/s00330-021-07858-2

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z

Shen, W., Zhou, M., Yang, F., Yang, C., & Tian, J. (2017). Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognition, 61, 663–673. https://doi.org/10.1016/j.patcog.2016.07.038

Wang, G., Liu, X., Li, C., Xu, J., Liu, Y., & Li, H. (2020). A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). European Radiology, 30, 5156–5163. https://doi.org/10.1007/s00330-020-06876-6

World Health Organization. (2021). Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer

Pabel, M. A. H., Bhattacharjee, B., Dey, S. K., Jamee, S. S., Obaid, M. O., Mia, M. S., ... & Sharif, M. K. (2025). BUSINESS ANALYTICS FOR CUSTOMER SEGMENTATION: A COMPARATIVE STUDY OF MACHINE LEARNING ALGORITHMS IN PERSONALIZED BANKING SERVICES. American Research Index Library, 1-13.

Das, P., Pervin, T., Bhattacharjee, B., Karim, M. R., Sultana, N., Khan, M. S., ... & Kamruzzaman, F. N. U. (2024). OPTIMIZING REAL-TIME DYNAMIC PRICING STRATEGIES IN RETAIL AND E-COMMERCE USING MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(12), 163-177.

Hossain, M. N., Hossain, S., Nath, A., Nath, P. C., Ayub, M. I., Hassan, M. M., ... & Rasel, M. (2024). ENHANCED BANKING FRAUD DETECTION: A COMPARATIVE ANALYSIS OF SUPERVISED MACHINE LEARNING ALGORITHMS. American Research Index Library, 23-35.

Uddin, A., Pabel, M. A. H., Alam, M. I., KAMRUZZAMAN, F., Haque, M. S. U., Hosen, M. M., ... & Ghosh, S. K. (2025). Advancing Financial Risk Prediction and Portfolio Optimization Using Machine Learning Techniques. The American Journal of Management and Economics Innovations, 7(01), 5-20.

Ahmed, M. P., Das, A. C., Akter, P., Mou, S. N., Tisha, S. A., Shakil, F., ... & Ahmed, A. (2024). HARNESSING MACHINE LEARNING MODELS FOR ACCURATE CUSTOMER LIFETIME VALUE PREDICTION: A COMPARATIVE STUDY IN MODERN BUSINESS ANALYTICS. American Research Index Library, 06-22.

Nguyen, Q. G., Nguyen, L. H., Hosen, M. M., Rasel, M., Shorna, J. F., Mia, M. S., & Khan, S. I. (2025). Enhancing Credit Risk Management with Machine Learning: A Comparative Study of Predictive Models for Credit Default Prediction. The American Journal of Applied sciences, 7(01), 21-30.

Bhattacharjee, B., Mou, S. N., Hossain, M. S., Rahman, M. K., Hassan, M. M., Rahman, N., ... & Haque, M. S. U. (2024). MACHINE LEARNING FOR COST ESTIMATION AND FORECASTING IN BANKING: A COMPARATIVE ANALYSIS OF ALGORITHMS. Frontline Marketing,Management and Economics Journal, 4(12), 66-83.

Hossain, S., Siddique, M. T., Hosen, M. M., Jamee, S. S., Akter, S., Akter, P., ... & Khan, M. S. (2025). Comparative Analysis of Sentiment Analysis Models for Consumer Feedback: Evaluating the Impact of Machine Learning and Deep Learning Approaches on Business Strategies. Frontline Social Sciences and History Journal, 5(02), 18-29.

Nath, F., Chowdhury, M. O. S., & Rhaman, M. M. (2023). Navigating produced water sustainability in the oil and gas sector: A Critical review of reuse challenges, treatment technologies, and prospects ahead. Water, 15(23), 4088.

Hossain, S., Siddique, M. T., Hosen, M. M., Jamee, S. S., Akter, S., Akter, P., ... & Khan, M. S. (2025). Comparative Analysis of Sentiment Analysis Models for Consumer Feedback: Evaluating the Impact of Machine Learning and Deep Learning Approaches on Business Strategies. Frontline Social Sciences and History Journal, 5(02), 18-29.

Nath, F., Asish, S., Debi, H. R., Chowdhury, M. O. S., Zamora, Z. J., & Muñoz, S. (2023, August). Predicting hydrocarbon production behavior in heterogeneous reservoir utilizing deep learning models. In Unconventional Resources Technology Conference, 13–15 June 2023 (pp. 506-521). Unconventional Resources Technology Conference (URTeC).

Ahmmed, M. J., Rahman, M. M., Das, A. C., Das, P., Pervin, T., Afrin, S., ... & Rahman, N. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. American Research Index Library, 31-44.

Al-Imran, M., Ayon, E. H., Islam, M. R., Mahmud, F., Akter, S., Alam, M. K., ... & Aziz, M. M. (2024). TRANSFORMING BANKING SECURITY: THE ROLE OF DEEP LEARNING IN FRAUD DETECTION SYSTEMS. The American Journal of Engineering and Technology, 6(11), 20-32.

Pabel, M. A. H., Bhattacharjee, B., Dey, S. K., Jamee, S. S., Obaid, M. O., Mia, M. S., ... & Sharif, M. K. (2025). BUSINESS ANALYTICS FOR CUSTOMER SEGMENTATION: A COMPARATIVE STUDY OF MACHINE LEARNING ALGORITHMS IN PERSONALIZED BANKING SERVICES. American Research Index Library, 1-13.

Siddique, M. T., Jamee, S. S., Sajal, A., Mou, S. N., Mahin, M. R. H., Obaid, M. O., ... & Hasan, M. (2025). Enhancing Automated Trading with Sentiment Analysis: Leveraging Large Language Models for Stock Market Predictions. The American Journal of Engineering and Technology, 7(03), 185-195.

Mohammad Iftekhar Ayub, Biswanath Bhattacharjee, Pinky Akter, Mohammad Nasir Uddin, Arun Kumar Gharami, Md Iftakhayrul Islam, Shaidul Islam Suhan, Md Sayem Khan, & Lisa Chambugong. (2025). Deep Learning for Real-Time Fraud Detection: Enhancing Credit Card Security in Banking Systems. The American Journal of Engineering and Technology, 7(04), 141–150. https://doi.org/10.37547/tajet/Volume07Issue04-19

Nguyen, A. T. P., Jewel, R. M., & Akter, A. (2025). Comparative Analysis of Machine Learning Models for Automated Skin Cancer Detection: Advancements in Diagnostic Accuracy and AI Integration. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 15-26.

Nguyen, A. T. P., Shak, M. S., & Al-Imran, M. (2024). ADVANCING EARLY SKIN CANCER DETECTION: A COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR MELANOMA DIAGNOSIS USING DERMOSCOPIC IMAGES. International Journal of Medical Science and Public Health Research, 5(12), 119-133.

Phan, H. T. N., & Akter, A. (2025). Predicting the Effectiveness of Laser Therapy in Periodontal Diseases Using Machine Learning Models. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 27-37.

Phan, H. T. N. (2024). EARLY DETECTION OF ORAL DISEASES USING MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS AND DIAGNOSTIC ACCURACY. International Journal of Medical Science and Public Health Research, 5(12), 107-118.

PHAN, H. T. N., & AKTER, A. (2024). HYBRID MACHINE LEARNING APPROACH FOR ORAL CANCER DIAGNOSIS AND CLASSIFICATION USING HISTOPATHOLOGICAL IMAGES. Universal Publication Index e-Library, 63-76.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Mazharul Islam Tusher, Md Refat Hossain, Arjina Akter, Md Rayhan Hassan Mahin, Sharmin Sultana Akhi, MD Sajedul Karim Chy, Mahfuz Haider, Sadia Akter, Md Minzamul Hasan, & Mujiba Shaima. (2025). Deep Learning Meets Early Diagnosis: A Hybrid CNN-DNN Framework for Lung Cancer Prediction and Clinical Translation. International Journal of Medical Science and Public Health Research, 6(05), 63–72. https://doi.org/10.37547/ijmsphr/Volume06Issue05-04